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The scaling invariance of the Navier-Stokes equations in the limit of infinite 
Reynolds number is used to derive laws for the inertial range of the turbulence 
spectrum. Whether the flow is homogeneous or not, the spectrum is chosen to 
be that given by a well-chosen biorthogonal decomposition. If the flow is 
homogeneous, this spectrum coincides with the classical Fourier (energy) spec- 
trum which exhibits Kolmogorov's k-5/3 power law if the scaling exponent is 
assumed to be 1/3. In the more general case where the homogeneity assumption 
is relaxed, the spectrum is discrete and decays exponentially fast under the 
assumption that the flow is invariant (in a deterministic or statistical sense) 
under only one subgroup of the scaling coefficient 2 of one scaling group of the 
equations (corresponding to one value of the scaling exponent). If the flow is 
invariant under two subgroups of scaling coefficients 2 and 2', the spectrum 
becomes maximal, equal to R+. Finally, when a full symmetry, namely an 
invariance under a whole group, is assumed and the spectrum becomes con- 
tinuous, the decaying law for the spectral density is derived and found to be 
independent of the specific value of h. These ideas are then applied to locally 
self-similar flows with multiple dilation centers (localized in space and time) and 
multiple scaling exponents, extending the concept of multifractals to space and 
time. 

KEY WORDS: Turbulence; biorthogonal decomposition; self-similarity; 
fractals; multifractals; wavelets. 

I N T R O D U C T I O N  

I t  is wel l  k n o w n  t h a t  a t h e o r y  for  fully d e v e l o p e d  t u r b u l e n c e  is fa r  f r o m  

b e i n g  c o m p l e t e .  T h e  h o p e  is t h a t ,  in  t h e  l im i t  of  v e r y  h i g h  ( e v e n t u a l l y  
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infinite) Reynolds number, some simple scaling laws are valid so that a 
universal (or scaling) theory can be derived. Although Kolmogorov's k 5/3 
universal law (K41) (16) for the spatial Fourier spectrum of homogeneous 
turbulence was derived 50 years ago, not much progress has been accom- 
plished since then regarding the derivation of an analogous scaling law of 
fully developed inhomogeneous turbulence. This work is an attempt in this 
direction. 

Following Frisch's "modern" viewpoint, (12) we now briefly review the 
basis of Kolmogorov's scaling theory. The Navier-Stokes equations 

~+(u.V)u: -!Vp+ vV~u 
P 

V . u = O  

(*) 

where u denotes the velocity field, p the pressure, and v the kinematic 
viscosity, are invariant under various symmetries. The K41 hypothesis are 
equivalent to assuming that the (asymptotic) symmetries of the Navier- 
Stokes equations are valid in a statistical sense, in particular the 
(statistical) translation and rotation symmetries (i.e., homogeneity and 
isotropy) and the scaling invariance. (12) Here, the meaning of "statistics" is 
in the time average sense. 

In this paper, we are interested in relaxing the hypotheses of 
homogeneity and isotropy of the K41 theory to derive a scaling law for the 
spectrum of fully developed inhomogeneous turbulence. Since in this case 
it is not possible to use the Fourier spectrum, we propose to use the 
spectrum of the operator U (as defined below) introduced in the derivation 
of the biorthogonal decomposition. (3) We reserve here the terminology 
"biorthogonal decomposition" for any decomposition which consists in an 
expansion of a space-time function--or signal--u(x, t) (here the velocity) 
into spatial orthogonal modes in a Hilbert space H(X) (xE X) and tem- 
poral orthogonal modes in a Hilbert space H(T) (t~ T) and which defines 
a unique dispersion relation between both sets of modes. The operator U 
is defined as follows: 

U: H(X) ~ H(T) 

such that 

Vq) E H(X), (Uq~)(t)=fxu(x,t)~o(x)d#(x) (**) 

where d#(x) [-resp. dfi(t)] denotes the measure defining the scalar product 
in H(X) [resp. H(T)].  The biorthogonal decomposition of u is the spectral 
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analysis of the operator U. Two particular examples of such a decomposi- 
tion are the two-dimensional Fourier decomposition for plane waves and 
the probability theory tool called the proper orthogonal decomposition, 
Karhunen Lo6ve expansion, or principal component analysis viewed from 
a deterministic approach [which uses L2(X)] when the statistical average 
needed here is chosen to be the time average. The application of the latter 
to turbulence was first proposed and developed by Lumley, (19'2~ discussed 
more recently in a number of works (e.g., Sirovich(24~), and applied to a 
rather large number of flows (see, e.g., Aubrye ta l . ,  (2) Berkooz etal., (5~ 
Chambers et al., (8) Glauser eta/., 03) Glezer eta/., 04) Deane et al., (9) Deane 
and Sirovich, (m~ Moin and Moser, (2~) Sirovich et al.~25~). In ref. 3, the intro- 
duction of two Hilbert spaces as well as the generalization to other Hilbert 
spaces than Lz(x)  and LZ(T) are of primary importance, as we show in this 
paper. This definition of the turbulence spectrum as that of the spectrum of 
the operator U for an inhomogeneous flow is natural since each eigenvalue 
represents the contribution to the square root of the kinetic energy of the 
flow (in the sense of the two Hilbert spaces defined above) of the associated 
eigenfunctions or spatiotemporal structures. It has been used in the past in 
the proper orthogonal decomposition context (see, e.g., refs. 11 and 15). 

However, in contrast with the previously mentioned studies, we 
cannot merely refer to the decompositions of the correlation functions only. 
While the latter correspond to the operators U*U and UU*, we are inter- 
ested in the operator U itself. This leads us to compare the scaling 
invariance in a statistical sense with the symmetry of UJ 4) In particular, we 
investigate the implications of the former on the spectrum of U. Therefore, 
in order to study the signal u by means of a self-adjoint operator, we 
consider the operator 

(o 7) 
defined on H ( X ) O H ( T ) .  

The paper is organized as follows. In Section 1, we define the operator 
U in a more general context than in our earlier work (3'4) to account for 
cases where the spectrum is continuous or where U is an unbounded 
operator with eventually a singular kernel u. This leads to a specific 
(generalized) form of the biorthogonal decomposition derived in 
Appendix A, which will be needed in the subsequent sections. In Section 2, 
assuming the presence of scaling symmetries with one dilation factor and 
one scaling exponent in the inertial range of a fully developed turbulent 
flow, we derive the exponentially decreasing spectrum in this range. We 
then show in Section 3 that this scaling law, valid whether the flow is 
homogeneous or not, gives the celebrated k -5/3 power law when the flow 
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is assumed to be homogeneous. In  Section 4, we investigate the spectrum 
of a flow which is invariant under two (or more) representations of the 
same scaling group (i.e., with the same scaling exponent). Assuming that 
the scaling symmetry is satisfied with only one or several dilation factors is 
equivalent to supposing lacunarity in the flow (by analogy with lacunarity 
in fractals). In the case of no lacunarity, the spectrum is R+ and if it is 
assumed to be continuous, a decaying law for the spectral density is 
derived. Finally, in Section 5, we extend the previous results of global self- 
similarity for which the scaling exponent is a function of the dilation center 
location in both space and time. This permits the treatment of eventual 
singularities which may occur in the space/time domain, following the 
multifractality concept of Parisi and Frisch (22) (extended to spatiotemporal 
systems). In Appendix A, we generalize the biorthogonal decomposition in 
order to cover the case of a continuous spectrum as well as the case of 
singular kernels. In Appendix B, we point out a connection between our 
results and the wavelet techniques of signal analysis. 

1. THE OPERATOR U 

In this work, we consider a spatiotemporal signal u which, in the case 
of the Navier-Stokes equations, represents the velocity field, which we 
denote by u(x, t) with x e R 3, t e R. Since what follows is valid whether we 
consider the full velocity field or only one component, for the sake of 
simplicity, we will consider one component u(x, t) only (see ref. 3 for the 
form that takes the biorthogonal decomposition if u is a vector). Here, it 
is possible that the operator U defined as ~3~ 

U: LZ(R 3, dx) --+ LZ(R, dt) 

such that 

(u~o)(t) =f u(x, t) ~o(x) dx (1.1) 

is neither compact nor bounded. We thus naturally consider the operator 
U as an integral operator in various Hilbert spaces, a possibility which was 
partially examined in refs. 3 and 4. In this regard, we consider two cases 
interesting from both the physical and mathematical viewpoints. 

In the first case, the spatial domain is infinite in R 3 as well as the 
temporal domain in R. This corresponds to the asymptotic dynamics of an 
open or spatially periodic flow. We can then use the definitions introduced 
in ref. 3 and restated in (1.1), where the domain of U is 

D(U) = { r ~ L2(R 3, dx), U(p ~ L2(R, dt) ) (1.2) 
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so that U*U and UU* are self-adjoint, positive operators. This definition, 
however, is not always possible since, for certain kernels u(x, t), D(U) 
defined as in (1.2) may not be dense in L2(R 3, dx), mainly due to local 
singularities or pathological asymptotic properties; u(x, t) can then be 
a Carleman or generalized kernel, which requires a special treatment 
presented in Appendix A. In brief, the method exposed there uses the 
Hilbert spaces L2(R 3, d#(x)) and L2(R, d~(t)), where the measures d# and 
d/2 are chosen so that the corresponding spaces contain the generalized 
eigenfunctions of U (see below for the exact meaning of "generalized"). 
Then the kernel u(x, t) may be defined only in a weak sense by 

(Uf, ~)=ff u(x, t) f (x )  ~(t) dx dt (1.3) 

where f and ~ belong to some subspaces of the Hilbert spaces 
L2(R 3, d#(x)) and L2(R, d~(t)). These subspaces are analogous to the space 
of test functions in the theory of distributions. 

In the second case, the theory is local in both space and time. We then 
arbitrarily choose a compact KcR3--a cube, for instance--and a finite 
interval T c  R and we define the scalar products by integrating over these 
domains and normalizing: 

(~01, @2)K=~ ~0I(X ) ~02(x) dx (1.4) 

and 

(Ol, ~t2)r=~T[ fr~l(t)t)2(t)dt (1.5) 

We call the Hilbert spaces thus defined H(K) and H(T). Of course, these 
spaces depend on the "windows" K and T and we will have to compare 
these different "realizations." Even if only one function u(x, t) is considered, 
it is clear that the choice of a pair of such Hilbert spaces (H(K), H(T)), 
defined on specific integration domains K and T as in (1.4) and (1.5), leads 
to different integral operators U in each case. It follows that the spectral 
properties of U, which depend sensitively on the chosen representation, can 
change accordingly. Moreover, it is not always possible to consider the 
infinite limits K ~  R 3 and T ~  R and, even if the latter exist, we may not 
recover the properties of U as defined in (1.1). In this paper, we are 
interested in the scaling properties of the spectrum of U in the presence 
of symmetries. Although the decay rates of the spectra corresponding to 
different representations may be different, they are linked to each other 

822/67/1-2-14 
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and their ratio can be easily calculated (see Appendix A). It is also worth 
noticing that the ratio of two decay rates corresponding to the presence of 
two different symmetries is independent of the selected representation. 

Additional knowledge of the kernel u(x, t) would be necessary to 
characterize the spectral measure of U. However, the fact that the 
scaling properties of the spectrum as well as the form of the generalized 
biorthogonal decomposition can be deduced from its symmetries seems 
remarkable. The latter can be written as 

+ ~ N A  

u(x, t) = fo A Z ~0A(x) ~ ( t )  dm(A) (1.6) 

where the generalized topos q)A and chronos oA are to be taken in the 
spaces mentioned above, L2(R 3, d#(x)) and L2(R, d~(t)) [see Appendix A 
for the exact meaning of (1.6)]. Notice that we can recover a discrete 
spectrum and a compact operator as treated in refs. 3 and 4 (except when 
the spectrum is degenerate with an infinite degeneracy) by considering the 
operator/3 4 UPA, where PA and P~ are the temporal and spatial spectral 
operators corresponding to a bounded interval of the spectrum in R +. This 
is also the way to proceed to restrict ourselves to the inertial range and 
eliminate both ends of the spectrum, namely the energy-containing and 
dissipative ranges (which is a necessary step in the following sections). It is 
also worth pointing out that our method does not require the elimination 
of the singularity at 0 ~ A, as shown in Appendix A. 

Finally, in order to avoid any confusion with the Fourier spectrum 
extensively used in hydrodynamics and other fields, we refer to the spec- 
trum of the operator U as the "kinetic spectrum" (we avoid the termi- 
nology "energy spectrum" used in turbulence for the Fourier spectrum). 

2. SCALING A N D  S Y M M E T R I E S  

We know that the Navier Stokes equations, in the limit of zero 
viscosity, are invariant under the scaling groups of transformations: 

x ~ 2 x  

t --* 21 ht (2.0) 

b/ ~ ~ h u  

and that the fully developed turbulent solutions themselves may be 
invariant, in a "statistical" sense and in the inertial subrange of the 
spectrum, under one or several subgroups of one of these groups 
(Kolmogorov's hypothesis(12)). We will examine the statistical aspect of the 
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problem at the end of this section. First, we assume that the turbulent field 
itself satisfies the scaling invariance: 

u(x, 21 /'t)=)thu(2 ix, t), •  3, t f fN (2.~) 

Although the Navier-Stokes equations are invariant under the transforma- 
tions (2.0) for all h and all 2 > 0, we suppose for the moment that (2.1) is 
true only for a certain 2 > 0 and for a certain h. Remark that if (2.1) is valid 
for a coefficient )~, then it is also valid for )~-~. Therefore, in what follows, 
we can take )~ > 1 or 2 < 1, the choice being only a matter of convention. 
We take 2 < 1, since then the eigenvalues of U are ordered in a decreasing 
order [see (2.5) and (4.5) below]. 

Following the technique developed in ref. 4 and recalled in the Intro- 
duction, we define two quasisymmetries, namely two representations of the 
multiplicative group R+ on the two Hilbert spaces used in the definition 
of U. First, putting aside the general case of Hilbert spaces defined 
with weights--treated in Appendix A--we now consider L2(R 3, dx) and 
L2(R, &). The first representation is defined on L2(R 3) by 

(S2(p)(x)  = ~ -3/2(p(/~--IX) (2.2) 

and the second one on L2(R) by 

(2.3) 

where ~=21 h. In the definitions (2.2) and (2.3), 2 e R  + is the group 
element and h e R is fixed. We then immediately obtain the commutation 
relations 

S~ U = ~US;, (2.4) 

with fl=)o-(h/2+2). When the operator U is not bounded, these expressions 
should be understood in the sense of Appendix A. When the kernel is 
singular, the analysis needs to be carried out with Hilbert spaces defined 
with weights (see Appendix A), which only changes the exponent of )t in ~. 
Iterating (2.4), we obtain the same expressions when 2 is replaced by 2", 
neZ ,  which leads to a scaling exponential law of the spectrum3 4) If 
the symmetry (2.4) is not satisfied with another 2 'eR+,  2 ' ~ 2 ,  then 
Theorem4.1 of ref. 4 [with Ker(U)=Ker(S~]] ,  which can be easily 
extended to the results of Appendix A, shows that the spectrum is discrete 
and consists of 

A~ = fl-nAo, n e Z (2.5) 
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Then, the topos (resp. chronos) are all images of the basic topo q0 o (resp. 
the basic chrono 0o) by the action of S~. (resp. S;~): 

~o n = S;,~0 o (2.6) 

0 ,  = S~,~b o (2.7) 

The analogy with the wavelet transforms is pointed out in Appendix B. 
If the scaling invariance (2.1) is satisfied for all 2 ~ R + (with a fixed h), 

then the spectrum of U is equal to R +. Reiterating the same analysis in the 
Hilbert spaces H(K) and H(T), with the scalar products defined in (1.4) 
and (1.5), we easily check that, in this case, the decay law (2.5) is given by 

~ = 2 - "  (2.8) 

This decay rate is independent of the window K x T as long as the scaling 
exponent h and the scaling coefficient )~ themselves do not depend on 
K x T. We will come back to this important issue in Sections 4 and 5. We 
should mention here that the scaling relation (2.4) is not, in the strict sense, 
equivalent to a fractal geometry of the velocity u since it involves a spatial 
as well as a temporal scaling. The fractal geometry, nevertheless, is 
recovered for the spatial and temporal two-point correlation functions, i.e., 
the kernels R(x, y) and R(t, s) of the operators U*U and UU*, (1'3~ since 
(2.4) implies that these operators enjoy the symmetry properties 

S f  l U* US~ = "/J- 2U* U (2.9) 

and 

$~ 1UU*S~ = "[J-zuu* (2.10) 

We can now question what remains from the previous analysis when 
the scaling property (2.1) is valid only in a statistical sense. If the ensemble 
average is replaced by a temporal average (as is often indeed the case in 
turbulence), then the second-order statistical correlations are simply 
described by the kernels of the operators U* U and UU*. We now have two 
possibilities as follows: 

(i) In the first one, we assume that the statistical scaling invariance 
is expressed by the simultaneous realization of (2.9) and (2.10), namely the 
two-point spatial correlation operator commutes with S~ (up to the factor 
~2) and the temporal two-point correlation operator commutes with ~ (up 
to the factor ~2). The question is now whether (2.9) and (2.10) imply (2.4). 
This leads to the following issue: can one reconstruct U from UU* and 
U'U? The answer to the latter is well known and can be deduced from the 
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polar decomposition of the operator U. Given the positive part of an 
operator and that of its adjoint, the operator U is unique up to a phase 
function on the spectrum if the latter is nondegenerate, namely N A = 1 for 
m-almost all A in (1.6). In our case, we have fixed the phase function by 
requiring a positive spectrum. In the other case, i.e., when the spectrum of 
U (and thus those of UU* and U 'U)  is degenerate, then U is fixed up to 
arbitrary rotations inside each degenerate eigenspace. However, this 
ambiguity does not modify the symmetry properties, in the sense that 
for two different choices U and U', the corresponding symmetries are 
equivalent, the intertwining operators being precisely the rotations which 
connect U and U'. An interesting point is that the spectrum is not affected 
by this indeterminacy in U and consequently, it is identical whether the 
symmetry is statistical [Eqs. (2.9), (2.10)] or instantaneous [Eq. (2.4)]. 

(ii) As in ref. 1, it should be mentioned that the kernel R(x, y) is of 
common use in turbulence, while the kernel /~(t, s) is not. Also, the 
symmetry satisfied by R(x, y)--often assumed in turbulence theory, e.g., 
Kolmogorov~16)--is supported by experimental results (to the extent 
recalled in the Introduction). On the contrary, since, to our knowledge, the 
temporal two-point correlation function has not been experimentally or 
numerically investigated (nor has the instantaneous three-dimensional 
velocity field itself), it is difficult to see whether (2.10) is valid or not. Con- 
sequently, we now relax (2.10) and assume that the "statistical" symmetry 
consists in (2.9) only. Then it is easy to check that (2.5) still holds, with the 
same decay rate fl, which is consistent with the fact that the square of the 
spectrum of U is the same as that of U*U. While (2.6) is still satisfied, (2.7) 
and (2.10) are now valid with a symmetry S which may be different from 
S~. The question is then the following: Can one reconstruct the symmetry 

satisfied by UU* from the symmetry S~ satisfied by U ' U ?  Since the 
operator U realizes an isomorphism between )~(X) and )~(T) and the 
operator S~. preserves x(X), S defined as 

v0A E z(T), - A 1 A (2.11) 
= 5 crs  

and g = 0 on the orthogonal of z(T), for m-almost all A and n <~ N A in the 
cases of Appendix A, is a representation of R+ in z(T) which realizes the 
desired symmetry. Moreover, if one supposes that this symmetry is 
implemented by an invertible and differentiable transformation acting on 
the variable t, then a dilation on time is obtained. (4) We are now back to 
(i). However, it would be interesting to investigate the nature of S from 
experimental or numerical data. While this would not have any effect on 
the turbulence spectra, it would determine the dependence of the chronos 
0n wJ[th respect to the first one [as in (2.7)]. 
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Finally, we would like to stress the fact that the indeterminacy in U 
described above in (i), in the case of a degenerate spectrum, can manifest 
itself as an internal bifurcation (3) through which a phase jump may occur 
when there is a crossing of eigenvalues and a redefinition of the spatio- 
temporal structures at a critical parameter value. 

3. SCALING E X P O N E N T  A N D  FOURIER S P E C T R U M  

In this section, we study the spatial two-point correlation function and 
its Fourier transform. In the K41 classical theory of fully developed 
turbulence, Kolmogorov deduced his universal k -5/3 law of the Fourier 
spectrum from a scaling law of the spatial two-point correlations, assumed 
to be homogeneous. We now point out that our analysis is consistent with 
Kolmogorov's famous power law O6) (and Frisch's "modern" viewpoint (12)) 
by showing that the consideration of quasisymmetries, as introduced in the 
previous section, as well as the assumption that the scaling exponent is 
equal to 1/3 (which comes from physical considerations, namely that there 
is a finite and constant rate of energy dissipation per unit mass), leads to 
a decrease of the spatial correlations as I x - y l  2/3 and thus to the k -5/3 
power law for the Fourier coefficients. Equivalently, if we assume the 
decreasing law of the correlations, the value of the scaling exponent can be 
deduced, and consequently the k 5/3 power law spectrum. 

It is interesting to note that the considerations of temporal averages 
necessary to realize a connection between the ensemble statistics and the 
temporal statistics leads us to choose the scalar products (1.4) and (1.5) 
instead of those defined in L2(R 3) and LZ(R) used in the previous section. 
We now consider that the spatial and temporal domains K and T are fixed 
and we introduce the operator U from L2(K) to L2(T) whose kernel is 
u(x, t). The unitary representations of R+ in L2(K) and L2(T) can be 
simply written as 

(S~q~)(x) = q~(~-~x) (3.1) 

( S ~ ) ( t )  = if(2 ~' -h)t) (3.2) 

In this case, the commutation relation becomes 

S~U= 2-hUS~. (3.3) 

It directly follows that the spatial correlation operator U*U and the 
temporal correlation operator UU* satisfy the relations 

Sz  1 U* US~ = 22h U* U (3.4) 

~ 1UU*S~ = 22hUU * (3.5) 
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Now, we use the fact that the kernel R~ of the operator S~U*US~. is 
simply the rescaled kernel of U'U: 

R~.(x, y) = R(Ax, 2y) (3.6) 

The assumption of the value of the scaling exponent h = 1/3 leads, in the 
homogeneous case, to the decay of the spatial correlation as Ix-Yt-2/3 by 
combining (3.4) and (3.6). Equivalently, the assumption of the decay of the 
spatial correlation as Ix - Y1-2/3 leads to the determination of h = 1/3. We 
stress here that although the homogeneity assumption needs to be made for 
the spatial correlation to depend on ] x - y  I only, the derivation of (3.4) 
and (3.5) does not depend on this hypothesis (nor on the isotropy and the 
stationarity of the flow). 

Now, by substituting the value h = 1/3 in (3.5) and denoting by/~a the 
kernel of the operator S ) ~ I u u * s 2 ,  we get the following relation for the 
temporal correlation: 

_~.(t, s) = k(22/3t, ,~2/3s) (3.7) 

Since (3.1) is valid independent of the dimension of x, we now substitute 
in all the above formulas x by the longitudinal variable x (for comparison 
with the one-dimensional Fourier transform, as commonly used in tur- 
bulence). If we suppose that the spatial correlation is homogeneous in this 
direction, i.e., 

R(x, y) = R ( l x -  yl) = R(r) (3.8) 

and define its Fourier transform by 

f+oo E(k) = R(k)  = e ~"rR(r) dr (3.9) 
-- oo 

we then deduce from (3.4) and (3.6) that 

f+ 
ov 

E(2k) = R(2k) = e ')k"R(r) dr = 2 5/3E(k) 
- - o o  

(3.10) 

If in addition the flow is assumed to be isotropic, E(k) is related to the 
three-dimensional Fourier spectrum (integral in Fourier space of the trace 
of the spectrum tensor over a circular sphere of radius lkl) and both 
spectra exhibit the same power law. Note that if h is kept throughout the 
previous derivation, E(k) decreases as k -(2h+ 1), which of course becomes 
k -5/3 for the particular value h = 1/3. This power law in k may appear 
confusing since the kinetic spectrum (which coincides with the Fourier 
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spectrum in homogeneous turbulence) decreases exponentially in n, 
according to (2.5). Both laws are, however, equivalent due to the fact that 
the wavelength of the topos ~0n, then identified with Fourier modes, 
decreases exponentially fast as a function of n. Here again the derivation of 
(3.10) does not depend on the particular form of the symmetry S (assumed 
to be S;~ above). It would be interesting to investigate whether the scaling 
(3.7) for the temporal two-point correlation is valid or not. 

Finally, we end this section by the following remark, which we will 
return to in Section 5. The assumptions of homogeneity and stationarity do 
not play any role in the derivation of the scaling laws (3.4) and (3.5), 
except in the fact that we suppose that the result is independent of both the 
size and the localization of the window K x T. Indeed, we should under- 
stand the symmetry (3.3), and therefore the scaling laws it leads to, in the 
limit where the integration domain K x T tends to infinity, when, of course, 
this limit exists. We should also mention that the symmetry (3.3) cannot be 
exact. The scaling relations between the spatial structures q~n show that the 
An and thus the E(k) do not satisfy the ideal scaling at both ends of the 
spectrum, but only in the inertial subrange (see Section 2). 

4. THE KINETIC S P E C T R U M  

In this section, we study the spectrum of the operator U in the 
presence of various symmetries of the type (2.1). As shown in Section 2, the 
existence of a representation of Z which appears as a quasisymmetry (2.5) 
implies that the kinetic spectrum is discrete and follows an exponentially 
fast decreasing law. If we consider the scaling exponent h fixed, as in the 
previous section, then the scales of An, q~n, and On depend only on 2 and 
the specific value of h. 

Now, let us suppose the presence of another symmetry (2.4) in the 
velocity field u defined with the same scaling exponent h but with a dif- 
ferent scaling coefficient )~' r 2. What are then the consequences of this new 
symmetry on the kinetic spectrum? A simple analysis of this situation 
shows that two and only two cases are possible: 

(i) The ratio In 2/ln )~' is a rational number, namely In Z/ln 2' = p/q, 
p ~ N, q e N. In this case, the spectrum is still discrete and exponentially 
decreasing with n, with a dilation factor 2" = •l/q = ( ~ , ) l / p .  

(ii) Otherwise, the kinetic spectrum coincides with R+ because then 
the closure of the set {2n(2') m, n, m e Z }  is R+.  

In view of the preceding analysis, we can conjecture a possible route 
toward turbulence in three stages, as described by the kinetic spectrum. We 
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emphasize here that this scenario depends only on the turbulence (kinetic) 
spectrum and therefore ignores the particular form of the velocity field 
u(x, t) as a function of space and time. Two totally different flows can thus 
follow the same route, provided their spectra enjoy the same property as 
described below. A simple example of this situation is given by two flows 
which differ by their symmetries S (see our remark above) or by sym- 
metries other than scaling symmetries (since the multiplicity does not affect 
the spectrum). In the following, we assume that a scaling symmetry in the 
fluid flow can appear at a finite (instead of infinite) Reynolds number (in 
the inertial range) as has been indeed observed in experiments. The first 
stage would be a traveling wave (usually present after the first instability 
in open flows) which corresponds to the degeneracy of the kinetic 
spectrum. A traveling wave, which is due to the existence of a temporal and 
spatial translation symmetry, (4) can be interpreted as a symmetry of the 
form (2.5) with a scaling factor 2 = 1 and translation coefficients. Then, as 
the Reynolds number, or another relevant bifurcation parameter, say e, 
varies, the deviation of the scaling factor from the value 1 would lead to an 
exponentially decreasing discrete spectrum with a unique value 2(e). A 
special case of this scenario could consist in the appearance of a symmetry 
with scaling factor )o in the traveling wave, in which case the degenerate 
spectrum would become exponentially decreasing, as, for instance, in the 
case of the degenerate traveling wave train described in ref. 4. To this 
regime, where only one scaling property with 2 r  1 is present, would 
immediately succeed the complex regime characterized by the fact that the 
kinetic spectrum described above becomes R+ as soon as another symmetry 
of scaling factor 2' r 1, logarithmically incommensurable with the first one, 
appears. We should keep in mind that the variation of 2 in the intermediate 
phase, as a function of the bifurcation parameter e, as well as the 
appearance of a second 2', are probably governed by conditions on the 
evolution of the global energy or entropy (3) which the spectrum can 
absorb. For example, the latter (per unit volume and time) is obviously 
limited by P~ and P~, that is, by the boundary conditions, which control 
the energy-containing range, and the Reynolds number, which determines 
the dissipation range. It is not clear why, at a certain parameter value, a 
new scaling symmetry appears (which is enough to provide a spectrum of 
U identified with R+,  the maximum spectrum for U, i.e., a spectrum 
without gaps). In the intermediate phase, the kinetic spectrum, although 
discrete, could consist of several families of eigenvalues with various decay 
rates. This could arise as a superposition of symmetries as described in 
ref. 4, because then the spectrum of U is only the union of the spectra of 
the various restrictions of U to the eigenspaces on which the symmetries 
act. But, in order for the spectrum to be maximal, namely R+,  a second 
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symmetry, logarithmically incommensurable with the first one, has to 
appear at least in one of these eigenspaces. 

If we suppose that the kinetic spectrum is absolutely continuous in 
fully developed turbulence, the spectral density of the spatial correlation 
can be written as (see Appendix A) 

E*(A) =A2f(A)  (4.1) 

where f satisfies the scaling property (A.36). If the flow satisfies the scaling 
property [(2.9), (2.10)], we obtain a scaling law which generalizes (3.10): 

E*(2hA ) = 2hE*(A ) (4.2) 

If the flow is invariant under a full symmetry, (2.9), (2.10) are satisfied for 
all positive 2, then we obtain from (4.1) and (4.2)--as well as from 
(A.36)--a decay law for f :  

f ( A )  oc A i (4.3) 

namely E*(A) is simply proportional to A. Finally, taking 

f (A )  dA = ~  6(A - A n )  (4.4) 
n 

in order to recover the case of a discrete spectrum, we get the particular 
form of (4.3) in this case: 

A] 2h 2 (4.5) + 1 = 2  A~ for a l ln  

Since, if the flow is homogeneous, the spectral density (4.2), or (4.5) in the 
discrete case, coincides with that of the Fourier spectrum (see above), the 
universal law K41 is satisfied (for h =  1/3). In view of the remark in 
Section 2, if the symmetry holds only in a "statistical" sense [namely (2.9) 
only is satisfied], then the spectrum laws (4.3) and (4.5) are still valid. 

Finally, we will show how the above scenario for the kinetic spectrum 
can become even more complex than in the case treated above. This occurs 
when the velocity has symmetries of the type (2.1) localized in space and 
time. Such a situation is treated in the next section. 

5. S P A C E - T I M E  LOCAL S T R U C T U R E S  

Experimental and numerical studies have shown that the global self- 
similarity of turbulence is not exact and that the flow is intermittent (see, 
e.g., Kuo and Corrsin, (18) She et al., ~23) Castaing et al., ~7) and Vincent and 
Meneguzzi(26)). Pushing further the ideas of the multifractal model of Parisi 
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and Frisch, (22) it is conceivable that the symmetries and singularities of the 
velocity field are nonuniformly distributed in space and time and that they 
are responsible for the intermittency effects and the behavior of the higher 
moments of the statistics. 

So far, we have treated the case where the velocity field u(x, t) satisfies 
the (global) symmetry property (2.0), that is, u(x, t) has a local symmetry 
only at the point (x, t) = (0, 0). However, following the previous 
arguments, it is most probable that there are various space-time locations 
(Xo, to) at which the velocity exhibits a particular dynamics, eventually a 
singularity of a certain order. This leads to modifying equation (2.1) and 
introducing multiple scaling exponents as allowed by the it/variance of the 
Navier-Stokes equations in the limit of zero viscosity given by (2.1). A 
theory which takes into account singularities (in space) of various orders is 
that of multifractals, as introduced in turbulence by Parisi and Frisch ~22) 
(see also ref. 12 for a review on the subject). 

In our context, this necessary generalization of (2.1) becomes very 
natural when the description has to adjust itself to the window Kx  T 
defining the integration domain. We now show how such a situation can 
be easily introduced in our framework and we also what the consequences 
are for the spectral properties of U. We stress that it is very important to 
first find a spatiotemporal version of the symmetry. We take it under the 
following form, which is the direct generalization of (2.1) when the sym- 
metry is not restricted to a unique dilation center (Xo, to). 

Local Symmetry Property (LS). There exists a function h: R 3 ~  R 
and a function h: R ~ R such that 

u(X-Xo,~(to)(t+to))=[3(Xo)U(~-lX-Xo, t-to) (5.1) 

for all (Xo, to) such that 

h(xo) = ~(to) (5.2) 

where we have used the notation 

~(to) = 21 ~0) and /3(x0) = )J '~x~ (5.3) 

and fixed 2 for the moment. The points (x o, to) which satisfy this property 
are the dilation centers. Remark that the condition 

h(xo) = ~(to) (5.4) 

comes from (and is equivalent to) the relation 

~ ( t o ) / ~ ( X o )  = ;. ( 5 . 5 )  
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It then suffices to apply the same technique as in Section 2 to derive the 
commutation relations needed in our analysis. For this, we have to con- 
sider the subgroups of spatial and temporal dilations-translations defined 
with the powers of the operators: 

and 

( S 2 , x o q ) ) ( x ) = ~ - 3 / 2 ~ ( ~ ,  l(x..{_Xo ) _ x O )  

(g~ ,o~ . ,o , / , ) ( t )  = ~ ( t o ) - 1 / 2  , / , (~ ( to )  - ~  ( t  + to)  - to)  

(5.6) 

We then derive the following commutation relation, which is equivalent to 
the LS property: 

US2,xo = ~h(xo)/2 + 2~(to) ' to U (5.8) 

From this relation, we deduce that the kinetic spectrum consists of an 
exponentially decreasing family of eigenvalues if the different values of 
the function h which appear in (5.8) are rationally related, leading to a 
degeneracy corresponding to 

UTx~ xo = T,, ,o U (5.9) 

where T~ denotes the translation operator i 

( T ~ o  ) ( x )  = ~o(x - ~ ) (5.10) 

and similarly T~ is defined as 

( f ~ , / , ) ( t )  = ~ , ( t  - ~)  (5 .11  ) 

On the contrary, if h(xo) /h (X l )  is irrational for two different dilation 
centers (x0, to) and (xi, t~), the kinetic spectrum becomes all R+.  Note 
again that all this is true if the symmetry (5.8) holds only in a statistical 
sense, namely we only know that scaling is valid for the two spatial point 
correlations only, i.e., 

S~,, lxo U* US;~.xo = 2 h(x~ + 4U*  U (5.12) 

This situation can appear at first similar to that met in the previous section 
when the kinetic spectrum becomes R+.  We could, however, obtain a dis- 
crete spectrum dense in R+ in the present case, as a consequence of the 
spreading of the dilation centers, which may lead to possible singularities. 
The dynamics should be different in this case compared to that observed in 
the situation described in Section 4, where only one such point exists. Note 
that there the symmetries should be considered in a local sense since, as we 

(5.7) 
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go away from the dilation center (Xo, to) (or perhaps a hypersurface of 
such centers), the velocity u has to be matched to the next symmetry with 
(xl, tl) as the new center. Thus, in the matching region, (5.6) is not exactly 
satisfied. Then, a simple perturbation argument leads to the conclusion that 
local deformations or defaults appear in the topos and chronos in these 
regions. [This deformation should be understood with respect to the 
corresponding topos and chronos for the families satisfying the global sym- 
metry (2.6), (2.7).] It is clear that, as in Section 2, the derivation is possible 
in the spaces H ( K )  and H ( T )  corresponding to a "window" leading to iden- 
tical formulas with the appropriate exponents, namely, (5.8) and (5.12) 
should be replaced by 

US~., xo = 2hS~(~o~. to U (5.13 ) 

3710 U* U2,xo = ]~2h(x~ U (5.14) 

Finally, we remark that, as in homogeneous, isotropic turbulence, the 
definition of the inertial range at finite (but large) Reynolds number 
is more complex than in (K41) since the dissipative range should now 
depend on the values of h present in the local scaling: in our formalism, 
there should be two projectors P~ and P~, for each value of the scaling 
exponent h. 

6. C O N C L U D I N G  R E M A R K S  

Extending the technique used by Kolmogorov to derive the k -5/3 

power law of the energy spectrum in isotropic, homogeneous turbu- 
lence, we have derived scaling laws for the turbulence spectrum of 
inhomogeneous turbulence in the inertial range, namely where scaling 
occurs. However, no assumption has been made regarding the transfer of 
energy down the spectrum, so that the value of h is not determined (the 
value h = 1/3 is still probably approximately valid). If the flow is invariant 
only under one subgroup of the scaling coefficient 2 of the group of dila- 
tions, the spectrum is discrete and follows an exponential law of decay rate 

2// 2 2 2h, namely A]+I =2  A n for all n. If the flow is invariant under two sub- 
groups of scaling coefficients 2 and 2', then the spectrum becomes R+. If 
the flow is invariant under the whole group of dilations 2 > 0 and the spec- 
trum is continuous, the spectral density of the spectrum E * ( A )  is found to 
be independent of h and equal to A. An interesting point is that these spec- 
trum JLaws do not depend on whether the scaling of the flow is deterministic 
or statistical, that is, whether it applies to the velocity (and consequently 
to the spatial and temporal two-point correlations) or to the spatial 
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two-point correlation only. In both cases, two symmetries, one spatial and 
one temporal, are present in the flow, the main difference being that in the 
first case, the temporal symmetry acts on the time variable (and is of 
the type present in the Navier-Stokes equations, namely a scaling transfor- 
mation), while in the second case, it may be more complex. It would be 
interesting to investigate the nature of this symmetry from experimental or 
numerical data. However, the fact that in any case both symmetries exist 
should have important consequences for turbulence modeling and numeri- 
cal simulations. It simply means that, provided that these symmetries are 
known, one needs to find one spatiotemporal structure (~'o, ~0o) only, all 
the other structures being systematically deduced. Since our results are con- 
sequences of scaling laws alone, they are valid in the inertial range only, so 
that a model or calculation based on the previous remarks would need to 
input both the energy-containing and the dissipative range. Although it is 
common to model the dissipative range in a rather crude way (as in 
"large-eddy simulations"), it may be possible to apply the ideas developed 
in this paper to this range as well, as indicated in the work of 
Foias et  al., ~11) who showed, based on the Gevray class regularity of the 
Navier-Stokes equations, that the spectrum should decay exponentially 
fast in the dissipative range as well. However, symmetries may be different 
there from those valid in the inertial range. It is interesting to note that 
Knight and Sirovich (15~ point out the existence of an inertial range in 
various numerical simulations of inhomogeneous turbulent flows. However, 
the scaling law they propose, namely A] oc n 11/9 based on a heuristic 
argument, is fundamentally different from ours. Finally, in the same way in 
which modifications have been made to explain deviations from the K41 
law by the introduction of the multifractal concept, (22) we were also able to 
define, in our case, local symmetries in space and time and deduce conse- 
quences for the spectrum. 

Finally, we would like to emphasize that all techniques used in this 
paper for the Navier-Stokes equations and their "chaotic" (i.e., turbulent) 
solutions are applicable to any other partial differential equations and their 
"self-similar" solutions which are invariant under scaling (or even more 
complex) transformations. If the scaling invariance is valid in one direction 
only (meaning in either space or time), then fractal and multifractal 
properties are recovered by our technique. The latter, however, is not 
limited to these "one-dimensional" cases and can be applied in the same 
manner if the scaling transformation involves both space and time, as we 
have shown in this paper. Temporal and spatial fractals/multifractals are 
then recovered for the temporal and spatial two-point correlations (whose 
properties, such as the fraetal dimension, may be different). 



Turbulence Spectra 221 

APPENDIX A 

In this technical appendix, we generalize biorthogonat decompositions, 
beyond the case treated in ref. 3, where the operator U, whose kernel is 
u(x, t), is bounded and compact. This generalization, made necessary by 
the present work, includes the case where the spectrum of U has a con- 
tinuous component as well as the case where U is an unbounded operator 
with eventually a singular kernel (Carleman kernel operator) in order to 
include the eventual divergences of u. 

It is our point of view that the best way to treat all these cases at once 
is to use the powerful theory of eigenfunction expansion of self-adjoint 
operators. This theory, which goes back to Krein, (17) has been developed 
by many others. It has been largely completed by Berezansky, (6) and the 
interested reader can find abundant information and bibliography in ref. 6. 
In our framework, such a theory has the advantage of permiting the treat- 
ment of cases much more general than that of bounded and compact 
operators with a very similar formalism as that used in the simpler case. (3'4) 
In brief, the method exposed in ref. 6 permits us to write the decomposition 

N 

u(x, t ) =  ~ A,,(p,(x)tpn(t ) (A.1) 
n = 0  

(N being either finite or infinite) when the spectrum is discrete if the func- 
tions ~on (resp. the functions ~ , )  are taken in a space "slightly larger" than 
the space L2(R 3) [resp. L2(R)] on which the operators U and U* act. If 
the spectrum is continuous, a formula similar to (A.1) holds where the sum 
must be replaced by an integral [see below, (A.14)]. Essentially, we adapt 
here Theorem V-4-1 of ref. 6 to the case where the operator acts from one 
space to the other, which is the essential step to realize the biorthogonal 
decomposition. For  a better understanding, we now recall some basic 
notions from ref. 6. One has to consider chains of three separable Hilbert 
spaces 

H_  _~ H 0 __ H+ (A.2) 

whose respective norms satisfy 

Ilull_ ~ Ilullo ~ < Ilult + (A.3) 

and such that H+ is a dense subspace of H0 for the norm I1 il0 and 
similarly Ho is a dense subspace of H for the norm II ' II . Moreover, the 
quasinuclearity of the embedding H is needed below, namely the operator 
J defined by 

(Jf, Jg)+ = (f ,  g)o, f ,  g e H  o (A.4) 
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considered as an operator on H 0 has to be Hilbert-Schmidt. Very often, it 
is possible to associate a sequence of Hilbert spaces as defined in (A.2) 
satisfying the above conditions to a self-adjoint operator A acting on H o 
with a dense domain. Then, the technique consists in using H_ as the space 
of "generalized eigenvectors" of A. 

A particular realization of such a chain is given by 

L2(Q,~dq)~_L2(Q, dq)~_L2(Q, pdq) (A.5) 

where Q is a separable locally compact space, dq a Borel measure (in this 
paper, Q = R 3 or R and dq = dx or dt), and p a measurable function with 
p(q) ~> 1. Here, the space L2(Q, p dq) is defined by the scalar product: 

(~' q)+ = fo ~(q) tl(q) p(q) dq < +oo (a.6) 

and similarly the space L2(Q, (l/p) dq) is defined by 

(a, fi)_ = c~(q) fl(q)-~--~ dq < +oo (A.7) 

Then, we can write the following (from Theorem V-4-1 in ref. 6 adapted to 
the case of the operator U). Let us suppose that for the operator U from 
L2(R 3, dx) to LZ(R, dt), corresponding to the kernel u(x, t) by (1.1) and 
(1.2), the operators U* U and UU* satisfy the conditions of Theorem V-4-1 
of ref. 6, namely: 

(1) There is a positive, bounded, and continuous function 7 defined 
on R+ such that the operator 7(U'U) is an integral operator acting on 
L2(R 3, dx) whose kernel R~(x, y) satisfies 

f IR~(x, y)12 dx < (A.8) + ~  

for almost all y ~ R  3 (with respect to dx), and 7(UU*) is an integral 
operator acting on LZ(R, dt) whose kernel satisfies 

f [_R./(s, t)[Z ds < (A.9) + o0 

for almost all t (with respect to dt), and 

(2) There exists a measurable function px(X)/> 1, x s R 3, such that 

1 
f f  IRT(x, Y)I p ~ d x  d y <  + ~  (A.lO) 
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and a measurable function pr( t )  >~ 1, t ~ R, such that 

1 ff Ik ,(s, t)tp- d, dt< (A.11) 

Then, we can write the decomposition of u(x, t) as 

+ ~o NA 
u(x, t) = f_ A ~ q~A(x) 0A(t) dm(A) (A.12) 

~O n= l  

where the measure dm is finite and has support on the spectrum of U, N A 

is finite or infinite, and the series q~2eL2(R3,(1/px)dx) and 02E 
L2(R, (1/pr) dt) converge in the metric of the tensorial product of the two 
spaces. The decomposition (A.12) holds for almost all x e R 3 and t e R. 

In order to reduce our case to Theorem V-4-1 of ref. 6, we consider the 
following chain [-see (A.2)]: 

H ~_Ho~_H + (A.13) 

where 

H o = L2(R  3, d x ) ( ~  L 2 ( R ,  d t )  (A.14)  

H+ = L2(R 3, Px dx) @ L2(R, Pr dt) (A.15) 

H_ = L2 (R3,-~xdx)G L2 (R, ; dt ) (A.16) 

If we now define a set of 2 x 2 matrices eij, j = 1, 2, such that 

euekl = 6j~eil (A. 17) 

J = J x |  +J r@e22  (A.18) 

then the operator 

where Jx (resp. J r )  is the embedding (A.4) for the spatial (resp. temporal) 
chain (A.5) with Q=R 3 (resp. Q=R), is Hilbert Schmidt and therefore 
(A.13) is quasinuclear. 

If we then define the operator V as 

V= U*|  U| (A.19) 

(A.20) 

which is a self-adjoint operator on H 0 satisfying 

V2= U*U@ell + UU* @e22 

822/67/l-2-15 
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and take ~(A)= 7(A2), from Theorem V-4-1 of ref. 6, we deduce the decom- 
position of V in generalized vectors defined in H as well as the fact that 
D(V) ~ H+ [D(V) denotes the domain of V as in (1.2)] is dense in H0, so 
that we can write 

NA 

\ /~, t ieD(V)~H+, (V~,ti)=f A ~ A A (~,(~,,)(q'),,ti)dm(A) (A.21) 
n = l  

Therefore, by writing ~b~=~oA| with (DAn~L2(R3,(1/px) dx) and 
O~sL2(R, (1/pr)dt) and taking ~ = r  and t i = 0 ( ~ t i r ,  we obtain the 
relation 

NA 

(U~x, t iw)=f  A Y~ ( ix ,  A A (P. )(On, tiT) din(A) (A.22) 
n = l  

Since H+ is dense in H o, (A.12) follows by identification of the kernels, for 
m-almost all A. We call the functions ~o 2 generalized topos and the 
functions 0~ generalized chronos. Notice that even in this case the exact 
dispersion relation (the one-to-one correspondence between topos and 
chronos) is preserved, of course for m-almost all A. 

Remark. On the one hand, since R~ is the kernel of 7(U*U ) and not 
that of U'U, and similarly R~ is the kernel of y(UU*) and not that of 
UU*, the conditions (A.10) and (A.12) allow us to treat the case of a non- 
bounded operator U. Most of the time, 7 is the resolvant function of some 
positive power of Jut: 

1 
y(A) = (Ak_ z ) '  Im(z) # 0  (A.23) 

On the other hand, the weights Px and PT allow the treatment of kernels 
with singularities. The symmetries are introduced in a similar way as in 
ref. 4, except that we now need to define them as unitary operators acting 
on the largest spaces, namely 

and 
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It then suffices to take the images of the corresponding symmetries in 
L2(R 3, dx) and LZ(R, dt). For instance, suppose that the kernels are 
polynomially singular. Then, we take 

px(x) = Ix[ 2" (A.26) 

pr( t )  = ]tl 2b (A.27) 

and define the symmetry operators by 

( 8 2  (~o)(x) = ~(a 3/2)(p(; - I x )  

(g, .~)(t)=~ ~ ~/~(c~ ~t) 

If we now use the invariance of u (for a given fl and h), i.e., 

u(x, t)=/~u(,~ ~x, ~-~t) 

with cq~=2 and ~ = 2  ~-/', /~=2 h, we get from (A.22) and (A.12) 

+ oo NA 
/~u(2 ix, ~ it) -- flfo A E A A (p, (2 - ' x )  t), (c~ - i t )  dm(A ) 

n = l  

+ 0"2, N A  

=fl tfo A Z  A S;.p, (x) S).0A(t) dm(A) 
n = l  

+ oo N A  

=fo B Z S;~~ 
n = l  

(A.28) 

(A.29) 

(A.30) 

(A.31) 

p = 3/2 - a (A.32) 

~= 1/2-b (A.33) 

Clearly, a and b are needed in order to eliminate a possible singularity due 
to h and thus the exponent of 2 appearing in ~ ~, that is, h + p + ( 1 -  h)z, 
only depends on h. Now, by identifying (A.12) and (A.31), we can conclude 
as follows: 

(P1) The spectrum of U, sp(U), is invariant by scaling 

sp(U) = fl-1 sp(U) (A.34) 

with the multiplicity NB = N~ 18, N~ being finite or infinite. 

where we have used the notation B = ]~-1A and ~ ~= fl2Pcd, the powers p 
and r depending only on h, Px, and Pr.  For instance, with Px and P r  
defined as in (A.26) and (A.27), we have 
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(P2) For  the absolute continuous part of the measure, let f be the 
spectral density 

dmc(A ) = f ( A  ) dA 

Since 

I f (~-~A) 
dmc(B) - dmc(A) (A.35) 

U(A) 

we get from (A.31) the scaling of this density: 

"fl ~f('l~ 1 A ) = f ( A )  (A.36) 

for almost all B with respect to this measure. 

(P3) P2 is true also for the singular part of the measure if we take 
the density of each component with respect to an arbitrary measure in the 
same class. 

(P4) As before, we get 

n ~p~ = S~p/~a, n = 1,..., NB (A.37) 

n ~ n 0B = Sa0~a, n = 1,..., NB (A.38) 

and 

Therefore, we have the exact generalization of the symmetries introduced in 
ref. 4. For  this reason, we use the same notation and write 

S~ U = ~US;~ 

which has the meaning of Propositions P1-P4 stated above. Note that the 
scaling ~ only depends on h, for a given 2 ~ R +. 

As before, it is clear that the same formulas are valid in the case of an 
operator defined in the "window" K x T with again the obvious change in 
the definition of ~, which is then 2 h [see (2.8)]. 

A P P E N D I X  B 

The reader familiar with the well-known wavelet analysis has probably 
noticed that, in the presence of symmetries of the type (2.2), (2.3) or (5.6), 
(5.7), the biorthogonal decomposition of u(x, t) (in the discrete case) 

u(x, t) = ~ n,, ~o(;~- nx - x~ O o ( ~ - n t -  t,,) (B.1) 
n 
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with 

and 

R (n 1 )  1 ~ (n 1 )  1 
xn - 1 - 2 x~ t, - l - ~ to (B.2) 

An=~Ao (B.3) 

coincides with a spatiotemporal wavelet decomposition which automati- 
cally selects spatial and temporal wavelet mothers ~0 o and ~o, the spatial 
and temporal dilation factors 2 and c~, and therefore the sequences of 
spatial and temporal translations xn and t,,. Even if the velocity field does 
not perfectly satisfy such a symmetry, the systematic selection of wavelet 
mothers in the inertial range (to avoid boundary conditions and viscous 
effects) could appear as a judicious choice. Following the hat fashion intro- 
duced in the literature for the classical wavelets, these wavelet mothers, 
necessarily adapted to each velocity field considered, could be called 
"barretes. "4 Here again, we see how important it is, from our point of view, 
to consider spatial as well as temporal symmetries. 
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